Nanostructured Ceramic Photocatalytic Membrane Modified with a Polymer Template for Textile Wastewater Treatment
نویسندگان
چکیده
Photocatalytic ceramic membranes have attracted considerable attention for industrial wastewater treatment. However, morphological control of the membrane surface to improve its photocatalytic reactivity for the degradation of organic pollutants remains a challenge. Herein, we report a new nanostructured TiO2/Al2O3 composite ceramic membrane prepared from a poly(oxyethylene methacrylate) (POEM) template through a sol–gel method and its photocatalytic performance in the treatment of a model dye compound. The POEM polymeric template allowed the homogeneous distribution of catalytic sites, i.e., the TiO2 layer, on the Al2O3 membrane surface, resulting in improved organic dye degradation along with effective fouling mitigation. The immobilization of a TiO2 layer on the Al2O3 membrane support also significantly enhanced the membrane adsorption capacity toward dye organic compounds. An organic removal efficiency of over 96% was achieved with the TiO2/Al2O3 composite membrane under Ultraviolet (UV) irradiation. In addition, the self-cleaning efficiency of the TiO2/Al2O3 composite membrane was remarkably improved by the degradation of organic foulants on the membrane under UV illumination.
منابع مشابه
Bioremediation and Detoxification of the Textile Wastewater with Membrane Bioreactor Using the White-rot Fungus and Reuse of Wastewater
Background: Application of membrane technology to wastewater treatment has expanded over the last decades due to increasingly stringent legislation, greater opportunities for water reuse/recycling processes and continuing advancement in membrane technology. Objectives: In the present study, a bench-scale submerged microfiltration membrane bioreactor (MBR) was used to assess the treatment of tex...
متن کاملSynthesis and Application of Functionalized Carbon Nanotube Infused Polymer Membrane (fCNT/PSF/PVA) for Treatment of Phenol-Containing Wastewater
In this study, polymer composite membranes comprising carbon nanotube (CNT), polysulfone (PSF) and polyvinyl alcohol (PVA) were synthesized via the phase inversion method and used to remove phenol from the phenol-containing wastewater. The fabricated membranes were reinforced with the functionalized carbon nanotubes (fCNTs) and coated with PVA to enhance their mechanical strength and anti-fouli...
متن کاملPhotocatalytic application of TiO2/SiO2-based magnetic nanocomposite (Fe3O4@SiO2/TiO2) for reusing of textile wastewater
In this research we have developed a treatment method for textile wastewater by TiO2/SiO2-based magnetic nanocomposite. Textile wastewater includes a large variety of dyes and chemicals and needs treatments. This manuscript presents a facile method for removing dyes from the textile wastewater by using TiO2/SiO2-based nanocomposite (Fe3O<su...
متن کاملSingle Step Preparation of Zirconia Ultrafi ltration Membrane over Clay-Alumina Based Multichannel Ceramic Support for Wastewater Treatment
Zirconia ultrafiltration membranes are widely developed and used for past several years. But the conventional sol-gel methods of zirconia membrane preparation involve many steps. In the present study an attempt was made to develop defect free zirconia ultrafiltration (UF) membrane in single step coating of zirconia nanopowder suspension by slip casting method over multichannel ceramic support. ...
متن کاملPerformance evaluation of mullite ceramic membrane for oily wastewater treatment using response surface methodology based on Box-Behnken design
Nowadays, oily wastewater is increasing along with the growth of various industries. So, wastewater treatment is necessary in order to protect the environment. In this study, a mullite ceramic membrane was prepared. Then, oily wastewater treatment with 200 mg L-1 concentration was investigated by the response surface methodology based on Box-Behnken design (BBD) using Design-Expert 7...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017